Squares of squares, and the group of rational points on the circle

2016-08-02 § 1 Comment

The purpose of this post is to describe a slightly different way of thinking about the existence – or otherwise – of a 3×3 magic square of squares. Of course it may not lead to any real progress, but it does at least suggest some natural weaker questions that may be more amenable. It follows on from part 1 and part 2. « Read the rest of this entry »

Almost-magic squares of squares

2016-07-18 § 2 Comments

In the last post we saw that every 3×3 almost-magic square is a rearrangement of three three-term arithmetic progressions that have the same common difference. In other words, if we pick any three numbers x, y and z, and any common difference d, then the nine numbers

xd, x, x+d
yd, y, y+d
zd, z, z+d

can be rearranged to make an almost-magic square

x z+d y-d
z-d y x+d
y+d x-d z

where all the rows and columns, and the leading diagonal, add up to x+y+z.

We’re interested in finding almost-magic squares where all the entries are square numbers, so that means we’re particularly interested in three-term arithmetic progressions of squares. Fortunately there is a well-developed theory of these things, which are closely related to Pythagorean triples.
« Read the rest of this entry »

Magic squares of squares: Part I

2016-07-13 § 2 Comments

A recent Numberphile video discussed an intriguing unsolved problem in number theory: is there a 3×3 magic square whose entries are all square numbers? (Matt Parker proposed a solution which doesn’t quite work: see the video for more. The “Parker square” even has its own Twitter account.)

It turns out that this question leads to some interesting mathematics, which I’m going to have a go at explaining. At the very least I hope to give some insight into why it’s a hard problem.

To reduce the risk that I’ll run out of time and energy before pressing Publish, I’m going to split this post into two or possibly three parts, which I’ll post separately. The first part, which you’re reading right now, gives some background on 3×3 magic squares. The second will explain how to find almost-magic squares of squares using a bit of number theory and computer algebra. By almost-magic I mean that the rows and the columns and one of the two diagonals have the same sum.

The third, if I write it, will be more speculative and look at some possible approaches to either finding the mythical square of squares or proving that it doesn’t exist.
« Read the rest of this entry »

Counting coins

2015-04-26 § 14 Comments

This afternoon, Matt Locke tweeted the following problem from his nine-year-old daughter’s maths homework:

3975

« Read the rest of this entry »

Tackling the Minimal Superpermutation Problem

2014-08-22 § 5 Comments

What’s the shortest string that contains every possible permutation of ABCD somewhere inside it? As it happens, it’s 33 letters long: ABCDABCADBCABDCABACDBACBDACBADCBA. A string like this is called a minimal superpermutation.

So what’s the shortest string that contains every possible permutation of ABCDE? It was recently shown that 153 letters is the shortest possible, and that there are eight different superpermutations of this length.

Okay, what about ABCDEF? The answer is that nobody knows. Until this week the shortest known superpermutation of ABCDEF was 873 letters long:

ABCDEFABCDEAFBCDEABFCDEABCFDEABCDFEABCDAEFBCDAEBFCDAEBCFDAEBCDFAEB
CDAFEBCDABEFCDABECFDABECDFABECDAFBECDABFECDABCEFDABCEDFABCEDAFBCED
ABFCEDABCFEDABCADEFBCADEBFCADEBCFADEBCAFDEBCADFEBCADBEFCADBECFADBE
CAFDBECADFBECADBFECADBCEFADBCEAFDBCEADFBCEADBFCEADBCFEADBCAEFDBCAE
DFBCAEDBFCAEDBCFAEDBCAFEDBCABDEFCABDECFABDECAFBDECABFDECABDFECABDC
EFABDCEAFBDCEABFDCEABDFCEABDCFEABDCAEFBDCAEBFDCAEBDFCAEBDCFAEBDCAF
EBDCABEFDCABEDFCABEDCFABEDCAFBEDCABFEDCABACDEFBACDEBFACDEBAFCDEBAC
FDEBACDFEBACDBEFACDBEAFCDBEACFDBEACDFBEACDBFEACDBAEFCDBAECFDBAECDF
BAECDBFAECDBAFECDBACEFDBACEDFBACEDBFACEDBAFCEDBACFEDBACBDEFACBDEAF
CBDEACFBDEACBFDEACBDFEACBDAEFCBDAECFBDAECBFDAECBDFAECBDAFECBDACEFB
DACEBFDACEBDFACEBDAFCEBDACFEBDACBEFDACBEDFACBEDAFCBEDACFBEDACBFEDA
CBADEFCBADECFBADECBFADECBAFDECBADFECBADCEFBADCEBFADCEBAFDCEBADFCEB
ADCFEBADCBEFADCBEAFDCBEADFCBEADCFBEADCBFEADCBAEFDCBAEDFCBAEDCFBAED
CBFAEDCBAFEDCBA

and it was thought that might be the shortest possible.

But we now know it isn’t, because I found a shorter one:

ABCDEFABCDEAFBCDEABFCDEABCFDEACBFDEACFBDEACFDBEACFDEBACFDEABCDFEAB
CDAEFBCDAEBFCDAEBCFDAEBCDFAEBCDAFEBCDABEFCDABECFDABECDFABECDAFBECD
ABFECDABCEFDABCEDFABCEDAFBCEDABFCEDABCFEDACBFEDCABFDECAFBDCEAFBDCA
EFBDCAFEBDCAFBEDCAFBDECAFDBECADFBECADBFECADBEFCADBECFADBECAFDEBCAD
FEBCADEFBCADEBFCADEBCFADEBCAFDECBAFDECABFDCEABFDCAEBFDCABEFDCBAEFD
BCAEDFBCAEDBFCAEDBCFAEDBCAFEDBCAEFDBACEFDBAECFBDAECFBADECFBAEDCFBA
ECDFBACEDFBACDEFBACDFEBACDFBEACDFBAECFDBAEFCDBAFECDBAFCEDBAFCDEBAF
CDBEAFCDBAEFDCBEAFDCBEFADCBEFDACBEFDCABFEDCBAFEDCBFAECDBFACEDBFACD
EBFACDBEFACDBFEACDBFAECBDFEACBDFECABDFCEABDFCAEBDFCABEDFCBAEDFCBEA
DFCBEDAFCBEDFACBEDFCABDEFCBADEFCBDAEFCBDEAFCBDEFACBDEFCABDFECBADFE
CBDAFECBDFAECBFDAECBFADECBFAEDCBFEADCFBEADCFEBADCEFBADCEBFADCEBAFD
CEBADFCEBADCFEABDCFAEBDCFABEDCFABDECFABDCEFABDCFEADBCEFADBCEAFDBCE
ADFBCEADBFCEADBCFEADCBFEDACFBEDACFEBDACEFBDACEBFDACEBDFACEBDAFCEBD
ACFEDBACFEDABC

I’ve uploaded a short note about it to the arxiv.

Revisiting “On editing text”

2014-06-19 § 1 Comment

This document is an incomplete draft.

About two years ago I wrote about a category-theoretic treatment of collaborative text editing. That post is unique in the history of Bosker Blog in having been cited – twice so far that I know of – in the academic literature; so it’s a little embarrassing for me to have to explain that it is almost entirely wrong. The good news is that the core idea can be rescued, and the corrected story is quite interesting. Other writers on this subject seem to have made at least some of the same mistakes I did, so I hope this will be useful to at least a few other people too. « Read the rest of this entry »

Decoding the mysterious symmetry of the bicycle lock numbers

2014-02-25 § Leave a comment

Suppose you have a lock of this sort bicycle lock that has n dials and k numbers on each dial. Let m(nk) be the minimum number of turns that always suffice to open the lock from any starting position, where a turn consists of rotating any number of adjacent rings by one place.

In the previous post, we found an algorithm for computing these bicycle lock numbers, revealing a mysterious symmetry, « Read the rest of this entry »

Where Am I?

You are currently browsing the Mathematics category at Bosker Blog.

Follow

Get every new post delivered to your Inbox.

Join 1,233 other followers